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 

Abstract—3D is a secret-key block cipher, designed to secure 

and fast encryption of large amounts of data. This block cipher 

uses multi-dimensional states to generalize the design of Rijndael. 

Thus, while maintaining the benefits of the AES design, 3D 

operates on 512-bit blocks of data and can also be used as a 

cryptographic primitive in the cryptographic systems with the 

large internal states. Since its proposal in 2008, the cryptanalysis 

of 3D has been considered in several papers. While the previous 

impossible differential attacks on 3D cipher can analyze up to 10 

rounds of the cipher, this paper, using a new 6-round impossible 

differential, presents an impossible differential attack on 11 

rounds of 3D. The proposed distinguisher begins in the input of 

AddRoundKey operation of round 3, and ends in the output of 

ShiftRows of round 8. Results show that the proposed attack on 

11-round of 3D cipher requires about 2501 chosen plaintexts and a 

time complexity of about 2495 11-round encryptions. 

 
Index Terms—Block ciphers, Cryptanalysis, Impossible 

Differential, Symmetric cryptography  

 

I. INTRODUCTION 

he block cipher 3D is an AES-based block cipher proposed 

by Nakahara at CANS 2008 [1]. This block cipher operates 

on 512-bit blocks and supports a 512-bit secret-key. Inspired 

from the design of AES [2], the main round transformations of 

3D are basically the same as those of AES, while it operates on 

larger blocks of data and a larger key size. In fact, 3D cipher 

puts four AES states in parallel and applies the diffusion of AES 

in two different directions in every two rounds in turn. Security 

of 3D block cipher has been considered through several 

cryptanalysis methods including multiset [1], [3], impossible 

differential [1], [3]-[4], truncated differential [5] and square 

attack [6]. Results of key recovery attacks on 3D block cipher 

are summarized in Table I. According to this table, the best 

known attack on 3D is a truncated differential attack which can 

be mounted on 13 rounds of it [5]. Two known-key 

distinguishers on 9.75-round and 15-round 3D have been also 

proposed in [3] and [7], respectively. 

In this paper we focus on impossible differential 

cryptanalysis of 3D. Impossible differential cryptanalysis, an 

extension of the differential attack [8], was first introduced by 
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Knudsen [9] and Biham [10] to analyze DEAL and Skipjack, 

respectively. This kind of attack uses differentials that hold with 

probability zero to derive the right key by discarding the wrong 

keys which lead to the impossible differential. This 

cryptanalysis technique has achieved considerable results on 

AES [11]-[14]. Also, for block cipher Camellia [15], which has 

been approved by NESSIE and the Japanese CRYPTREC 

projects, the best cryptanalytic results are obtained by the 

impossible differential attacks [16]-[18]. 

TABLE I 

RESULTS OF KEY-RECOVERY ATTACKS ON 3D BLOCK CIPHER 
Rounds 

# 

Time 

(Encryptions) 

Data Memory Success 

Rate 

Ref Attack 

Type 

5.75 2139 2129 CP 2128 1 [1] Multiset 

7, 8, 9 2133, 2189, 2414 ? ? ? [6] Square 

5.75 265.6 236 CP 232 1 [1] Imp. Diff 

9 2478 2445 CP ? 1 [4] Imp. Diff 

10 2401 2501 CP 2311 1 [3] Imp. Diff 

11 2288 2251 CP 2128 0.24 [5] Trunc. Diff 

11 2113 2252 CP 2128 0.0034 [5] Trunc. Diff 

13 2308 2470 CP 2128 ≈1 [5] Trunc. Diff 

11 2495 2500.5 CP 2381 1 This Paper Imp. Diff 

 

As it is seen in Table I, previous impossible differential 

analyses of 3D cipher are applicable up to 10 rounds [1], [3]-

[4]. In this paper, using a new 6-round impossible differential 

(ID), we propose an impossible differential cryptanalysis of 11 

rounds of 3D cipher. This attack requires about 2500.5 chosen 

plaintexts and 2505 memory accesses which is equivalent to 

about 2495 11-round encryptions. Also, the attack needs about 

2381 bytes of memory to store the intermediate values and the 

precomputations. 

The rest of this paper is organized as follow. Section II 

provides a brief description of the 3D cipher. Section III 

introduces a new 6-round ID distinguisher of 3D. A new key 

recovery attack on 11 rounds of 3D is described in Section IV. 

Finally, the paper is concluded in Section V.  

II. PRELIMINARIES AND A BRIEF DESCRIPTION OF 3D 

The block cipher 3D is a 22-round SPN block cipher with 

512-bit block length and 512-bit key. Each state in the cipher is 

composed of 64 bytes 0 1 63( , , , )a a a  which are ordered 

column-wise as follows: 
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0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
A

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 



 

Moreover, a key scheduling algorithm generates 22 rounds 

of 512-bit subkeys, each with the same order and structure as 

the state. Like AES, each round of 3D consists of four 

transformations, each one is considered as a fraction of 0.25 of 

one round. Using the terminology of [1], these transformations 

are as follow:  

- κi: bit-wise XOR with the 512-bit subkey of i-th round (ki), 

equivalent to the AddRoundKey operation in the AES. 

- γ: a byte-wise S-box layer with the 8-bit S-box of AES, 

equivalent to the SubBytes operation in the AES. 

- θ1, θ2: two different byte transpositions equivalent to the 

ShiftRows operation of AES, applied in two different 

directions, alternately. θ1 and θ2 are applied in odd-numbered 

rounds and even-numbered rounds according to the following 

permutations, respectively: 

 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

5 9 13 1 21 25 29 17 37 41 45 33 53 57 61 49

1

10 14 2 6 26 30 18 22 42 46 34 38 58 62 50 54

15 3 7 11 31 19 23 27 47 35 39 43 63 51 55 59

2

:

:

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a





 
 
 
 
 
 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

17 21 25 29 33 37 41 45 49 53 57 61 1 5 9 13

34 38 42 46 50 54 58 62 2 6 10 14 18 22 26 30

51 55 59 63 3 7 11 15 19 23 27 31 35 39 43 47

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 
 

 

As it is discussed in [19], these two permutations could be 

unified in a single byte permutation with the same diffusion 

property.  

- π: a 4×4 matrix multiplication is applied to columns of the 

state, equivalent to the MixColoumns operation of AES. 

The i-th round of an r-round 3D cipher ( 0 1i r   ) is 

denoted by 
( mod2) 1 ( )i i X   

, where X is the round input 

state. In the last round, the π operation is replaced by an 

additional AddRoundKey (round subkey rk ). We refer to [1] for 

more details of 3D structure. Because AddRoundKey and 

MixColumns operations are both linear, it is possible to replace 

them by each other. In such a case, we have an equivalent round 

subkey ( )eqk k . 

Notations. The specific bytes are indicated by brackets; for 

example bytes 2 and 8 of the round subkey ik  are indicated by 

,[2,8]ik . 
ix  , 

ix  , 
ix   and 

ix 
 denote the intermediate values 

after the application of SubBytes, ShiftRows, MixColoumns and 

AddRoundKey operations of round i, respectively. Moreover, 
( )eq

ix   is used to denote the AddRoundKey operation with the 

equivalent round subkey eq

ik . 

III. NEW 6-ROUND IMPOSSIBLE DIFFERENTIAL OF 3D 

The impossible differential attack presented in this paper is 

based on a new 6-round impossible differential. As illustrated 

in Fig. 1, this distinguisher begins in the input of AddRoundKey 

operation of round 3 with a difference which is nonzero in any 

desired three bytes of the 16-th column and is zero in the other 

61 bytes. So, there exist four different types of the input 

difference. Fig. 1 shows how one of these input differences 

leads to a difference in the output of round 5 which is zero in 

one slice and nonzero in the others. On the other hand, in the 

decryption direction, the distinguisher starts in the output of 

ShiftRows of round 8 with a difference which is nonzero in only 

one byte of the 16th column and zero in the other 63 bytes. Fig. 

1 shows one of the four possible output differences leading to a 

difference which is nonzero in all 64 bytes in the output of 

round 5. This contradicts the output difference of the 

differential in the encryption direction.  

 

 
Fig. 1. The new 6-round impossible differential of 3D cipher. 

IV. IMPOSSIBLE DIFFERENTIAL ATTACK ON 11 ROUNDS OF 3D 

For mounting the impossible differential attack on 3D cipher, 

three rounds are added to the beginning of the 6-round 

distinguisher and two rounds to the end of it. Fig. 2 and Fig. 3 

illustrate these added rounds, respectively. As it can be seen, 62 

bytes of subkeys are involved in this attack and the ultimate 

goal is to recover the correct value of these subkeys. The attack 

scenario is composed of two phases. At the first stage some 

tables are pre-computed and then the online stage begins.  

 

 
 

Fig. 2. Three additional rounds before the distinguisher 

 

An issue, which must be considered in the online stage, is the 

amount of required proper plaintext/ciphertext pairs. Proper 

pairs are the plaintext/ciphertext pairs which satisfy the input 

difference P  and output difference C  as it is indicated in 

Fig. 2 and 3, respectively. Based on Fig. 2, the probability for a 

plaintext pair with the difference ∆P to meet the input 

difference of the distinguisher is about 2−192 × 2−48 × 4 × 2−8 = 
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2−246. For a ciphertext pair with the difference ∆C the 

probability to meet the output difference of the distinguisher is 

also about 2−96 × 4 × 2−24 = 2−118. So, for a proper 

plaintext/ciphertext pair, the probability to meet the impossible 

differential is about 2−246 × 2−118 = 2−364. For a specific value of 

the 62-byte target subkey, if a proper plaintext/ciphertext pair 

meets the impossible differential, then the value of subkey is 

wrong and must be eliminated from the key space. Therefore, 

using 2n
 proper pairs, the probability for a wrong key not to be 

eliminated is about  
2

3641 2
n

 . So, using 2n  proper pairs, 

about  
2

496 3642 1 2
n

   wrong 62-byte subkeys remain in the 

key space. For n = 372.43, there will remain only about one 

wrong subkey (in addition to the correct subkey which is not 

eliminated). In the two upcoming subsections, at first, some 

required precomputations are described and then we will 

illustrate the online attack procedure.  

 

 
 

Fig. 3. Two additional rounds after the distinguisher 
 

A. Precomputations 

In this section, we prepare three tables H1, H2 and T to reduce 

the amount of partial encryption/decryptions in the online stage 

of the attack. 

- H1:  For all  of  the   8 3 8 8 402 2 2 1 2      possible 

pairs  of  2,[48,49,50,51] 2,[48,49,50,51],x x   which have non-zero 

difference only in the byte 49, perform a partial decryption to 

compute the values of pairs  2,[48,1,18,35] 2,[48,1,18,35],x x  . Store the 

obtained pairs in a hash table H1 indexed by their difference 

2,[48,1,18,35] 2,[48,1,18,35]x x  . Such a table has 232 rows and on 

average 240/232 = 28 pairs lie in each row. Clearly, for an 

intermediate pair  1,[48,1,18,35] 1,[48,1,18,35],x x   it is sufficient to 

access the row indexed by 1,[48,1,18,35] 1,[48,1,18,35]x x   in H1 to 

obtain on average 28 values for 
1,[48,1,18,35]k .  

H2:  For all  of  the   8 3 8 8 402 2 2 1 2      possible 

pairs  of  2,[60,61,62,63] 2,[60,61,62,63],x x   which have non-zero 

difference only in byte 60, compute the values of pairs 

 2,[60,13,30,47] 2,[60,13,30,47],x x  . Store the obtained pairs in a hash 

table H2 indexed by their difference 2,[60,13,30,47] 2,[60,13,30,47]x x  . 

Such a table has 232 rows and on average 240/232 = 28 pairs lie in 

each row. So, for an intermediate pair  1,[60,13,30,47] 1,[60,13,30,47],x x   

it is sufficient to access the row indexed by 

1,[60,13,30,47] 1,[60,13,30,47]x x   in H2 to obtain on average 28 values 

for 
1,[60,13,30,47]k . Note that we can also use table H2 to obtain on 

average 28 values of 
0,[60,49,54,59]k  for each plaintext pair of 

 0,[60,49,54,59] 0,[60,49,54,59],x x   which take this pair to a difference 

1,[60,61,62,63]x   with only one non-zero byte in location 60. 

-T: For all of the 232 possible pairs of  3,[60,49] 3,[60,49],x x   with 

non-zero difference, perform a partial encryption through 

1    to compute the difference value 3,[60,61,62,63]x  . Now, 

if this difference is non-zero exactly in three bytes, then store 

the pair in table T indexed by 3,[60,49] 3,[60,49]x x  . The 

probability to meet this condition is about 4 × 2−8 = 2−6, so about 

232−6/216 = 210 pairs lie in each of the 216 rows of table T. Clearly, 

for an intermediate pair  2,[60,49] 2,[60,49],x x   it is sufficient to 

access the row of T with index 2,[60,49] 2,[60,49]x x   to obtain on 

average 210 values for 
2,[60,49]k . 

The overall computations for preparing these tables are less 

than 241 partial encryptions. Further, the required memory for 

these tables is about 243, 243 and 228 bytes for the tables H1, H2 

and T, respectively. 

B. The online stage of the attack procedure 

After preparing the hash tables, the attack is carried out by 

the following steps. In the first step of the attack the required 

proper plaintext/ciphertext pairs are prepared. Then, attack 

proceeds by removing wrong values of involved 62-byte 

subkeys from the key space until only the right value of the 62-

byte subkey remains. For reducing the time complexity, we use 

the early aborting technique [16] as well as the precomputed 

tables H1, H2 and T. The overall required computations for each 

step (with respect to the 11-round 3D encryptions) are indicated 

in the end of that step. Also, in the following time complexities, 

the coefficient   equals to  6.462 (1 11) (1 16) 2   . 

- Step 1. Take 2373.43 structures of ciphertexts such that each 

structure contains about 2128 ciphertexts that are fixed in the 48 

bytes of C  with zero difference indicated in Fig. 3 and take 

all the possible values in other 16 bytes. So, about 2128 × 2128/2 

= 2255 ciphertext pairs are obtained from each structure which 

their difference is coincident to the required C . Obtain the 

corresponding plaintexts of each structure in a chosen 

ciphertext scenario. Since the probability of having a plaintext 
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pair with the difference P  in Fig. 2 is 2−256, then for each 

structure we can collect about 2255 × 2−256 = 2−1 plaintext pairs 

with the difference P . Hence, after examining all of the 2373.43 

structures, we can collect about 2n = 2373.43 × 2−1 = 2372.43 distinct 

ciphertext/plaintext pairs satisfying the desired C  and P , 

respectively. As it was discussed in the beginning of Section 

IV, this amount of data is sufficient to recover the correct value 

of 62-byte subkey. The time complexity of this step, which 

corresponds to the data complexity of the attack, is about 2128 × 

2373.43 = 2501.43 11-Round 3D encryptions. We also need 4 × 

2372.43 × 64 = 2380.43 bytes of memory to store the proper 

ciphertext/plaintext pairs. 

- Steps (2, 3, 4, 5). For i = 0,1,2,3 do the following steps 2, 3, 

4 and 5 sequentially: 

Guess 32 bits of 
11,[3 16 ,6 16 ,9 16 ,12 16 ]i i i ik    

 and for all of the 242n i  

proper ciphertext pairs  

 11,[3 16 ,6 16 ,9 16 ,12 16 ] 11,[3 16 ,6 16 ,9 16 ,12 16 ],i i i i i i i ix x 

       
 , perform a 

partial decryption to obtain the pairs 

 ( ) ( )

10,[12 16 ,13 16 ,14 16 ,15 16 ] 10,[12 16 ,13 16 ,14 16 ,15 16 ],eq eq

i i i i i i i ix x 

       
 . If for a 

proper pair, the difference of the obtained pairs is non-zero only 

in the byte 
( )

10,[15 16 ]

eq

ix 

 , then keep this proper pair for the next 

step. The probability of this condition is about 242 , so there 

remain about 
 24 1

2
n i 

 proper pairs for the next step. The time 

complexity of this step is about 
 24 32 1 32 82 2

n i i n i 
        

encryptions. 

- Step 6. Now, we have the intermediate remaining pair values 

 ( ) ( )

10,[15,30,45,60] 10,[15,30,45,60],eq eqx x  . Guess 32 bits of 10,[15,30,45,60]

eqk  and 

for all of the 962n   remaining pairs  ( ) ( )

10,[15,30,45,60] 10,[15,30,45,60],eq eqx x   

perform a partial decryption to obtain the difference value 

8,[60,61,62,63]x  . If for a pair, this difference is nonzero in only one 

byte, then we have met the desired difference in the output of 

the distinguisher in Fig. 1, so keep such a pair for the next step. 

The probability of this condition is about 4 × 2−24, so it is 

expected to remain about 1182n   proper ciphertext pairs which 

meet the output difference of the distinguisher. This step 

requires about 
 96 160 642 2
n n 
      encryptions.  

- Steps (7, 8, 9, 10). For all of the 1182n   remaining ciphertext 

pairs take their corresponding plaintext pairs. Then for i = 

0,1,2,3 do the following steps 7, 8, 9 and 10 sequentially: 

Guess four bytes 
0,[16 ,5 16 ,10 16 ,15 16 ]i i i ik   

 and for all of the 

118 242n i   remaining proper plaintext pairs 

 0,[16 ,5 16 ,10 16 ,15 16 ] 0,[16 ,5 16 ,10 16 ,15 16 ],i i i i i i i ix x     
  perform a partial 

encryption to obtain pairs 

 1,[16 ,1 16 ,2 16 ,3 16 ] 1,[16 ,1 16 ,2 16 ,3 16 ],i i i i i i i ix x 

     
 . If for a pair, the 

difference value of 1,[16 (( 1) mod 4)]i ix 

   is nonzero and the 

difference of the other three bytes of (1 + 4i)-th column of 
1x   

are zero, then store this pair for the next step. The probability 

of this condition is about 242 , so about 
 118 24 1

2
n i  

 proper 

pairs remain for the next step. This step requires about 
   118 24 160 32 1 74 82 2
n i i n i 
          encryptions. 

- Steps (11, 12, 13). So far, we have guessed 288 bits of 

subkeys and obtained about 2142n   remaining pairs from 

previous steps. For i = 0, 1, 2 do the following steps 11, 12 and 

13 sequentially: 

Guess four bytes 
0,[1 16 ,6 16 ,11 16 ,12 16 ]i i i ik    

 and for all of the 

214 242n i   remaining plaintext pairs 

 0,[1 16 ,6 16 ,11 16 ,12 16 ] 0,[1 16 ,6 16 ,11 16 ,12 16 ],i i i i i i i ix x       
  perform a 

partial encryption to obtain pairs 

 1,[12 16 ,13 16 ,14 16 ,15 16 ] 1,[12 16 ,13 16 ,14 16 ,15 16 ],i i i i i i i ix x 

       
 . If for a pair, 

the difference value of 1,[17 13]ix 

  is nonzero and the difference 

of the other three bytes of 4(i + 1)-th column of 
1x   are zero, 

then store this pair for the next step. The probability of this 

condition is about 242 . So, about 
 214 24 1

2
n i  

 proper pairs 

remain for the next step. About 
   214 24 288 32 1 106 82 2
n i i n i 
          encryptions are 

performed in this step. 

- Step 14. So far, we have guessed 384 bits of subkeys and 

obtained about 
2862n 

 remaining pairs from the previous steps. 

Prepare a vector U of 
1122  bits, each corresponds to a possible 

value of 112 bits 
0,[60,49,54,59] 1,[48,1,18,35] 1,[60,13,30,47] 2,[60,49]| | |k k k k . 

Now, for each of the 2862n   remaining pairs do the following 

steps: 

- Step 14.1. In this step, we have the intermediate pair values 

 1,[48,1,18,35] 1,[48,1,18,35],x x  . So, by reference to the row indexed by 

1,[48,1,18,35] 1,[48,1,18,35]x x   in table H1, obtain 28 values for 

1,[48,1,18,35]k . Then, for these key values make a partial encryption 

to obtain corresponding 28 pair values  2,[49] 2,[49],x x  . The time 

complexity of this step is 
 384 286 8 1062 2
n n     memory 

accesses (MA) and 
1062n   encryptions. 

- Step 14.2. We have the plaintext pair values 

 0,[60,49,54,59] 0,[60,49,54,59],x x  . So, by reference to the row indexed 

by 
0,[60,49,54,59] 0,[60,49,54,59]x x   in table H2, obtain 28 values of 

0,[60,49,54,59]k . Then, for these key values make a partial 

encryption to obtain the corresponding 28 pair values

 1,[60] 1,[60],x x  . This step is performed by 
 384 286 8 1062 2
n n     

MA and 
1062n    encryptions. 

- Step 14.3. For each of the obtained 28 pair values

 1,[60] 1,[60],x x  , we have the intermediate pair values 

 1,[60,13,30,47] 1,[60,13,30,47],x x  . So, by reference to the row indexed 

by 1,[60,13,30,47] 1,[60,13,30,47]x x   in table H2, obtain 28 values of 

1,[60,13,30,47]k  and for these key values make a partial encryption 

to obtain the corresponding 28 pair values  2,[60] 2,[60],x x  . This 
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step requires 
 384 286 8 8 1142 2
n n      MA and 

1142n   

encryptions. 

- Step 14.4. For each of the 8 8 8(2 2 ) 2   obtained pair values

 2,[60,49] 2,[60,49],x x  , access to the row indexed by 

2,[60,49] 2,[60,49]x x   in table T to obtain 210 values for 
2,[60,49]k . 

Then, for each of the 8 8 8 10 342 2 2 2 2     obtained subkey 

values 
0,[60,49,54,59] 1,[48,1,18,35] 1,[60,13,30,47] 2,[60,49]| | |k k k k  mark the 

corresponding bits in the vector U to indicate them as wrong 

keys. This step requires 
 384 286 34 1322 2
n n     MA. 

- Step 15. Check all of the bits of the vector U and if there is a 

bit that is not marked, you have found a candidate for the correct 

496-bit subkey which consists of the corresponding 112-bit 

value of this unmarked bit along with the current 384-bit 

guessed subkey. So, store this candidate and continue the 

procedure. This step requires 384 112 4962 2   MA. 

As it is expected, the above procedure proceeds until all of 

the 2384 possible values of 384-bit subkeys are guessed in order. 

It is expected that eventually, there will remain about 2 

candidates for the correct 496-bit target subkey. For each 

candidate, 256 bits of these 496 bits are the bits of k0. Finally, 

for each candidate we perform an exhaustive search for the 

other 256 bits of k0 with 2 × 2256 11-round encryptions.  

C. Complexity of the attack 

As mentioned in Step 1 of the online stage of the attack, the 

required data to mount the attack contains about 2128 × 2373.43 = 

2501.43 chosen plaintexts. The memory complexity consists of 

4×2372.43 ×64 = 2380.43 bytes of memory to store the proper 

ciphertext/plaintext pairs, 2112 bits to store the U vector in step 

14, and about 244 bytes for the precomputed tables. Also, note 

that the required memory for storing the intermediate pairs is 

far less than 2380.43 bytes of memory, hence the total memory 

complexity is about 2381 bytes of memory. 

As mentioned in the online stage of the attack, for n = 372.43, 

the dominant parts of the time complexity include 2504.43 MA in 

Step 14-4, 2496 MA in Step 15, and 2487.97 11-round 3D 

encryptions in step 13. On the other hand, for each round of 3D, 

transformations γ and π can be evaluated by 64 and 16 memory 

accesses, respectively. In a same way, according to the key 

schedule of 3D, described in [1], each round key k1 to k11 is 

obtained with 16 + 16 = 32 memory accesses. Thus, the 

application of 11-round encryptions requires about 

(11×64+10×16)+11×32 = 1216 ≈ 210.25 memory accesses (The 

complexity of key additions and byte permutations are 

negligible). 

Hence, the total time complexity is equivalent to about 

2505−10.25 + 2488 ≈ 2495 11-round encryptions. However, if we 

increase the number of remaining candidates from one 

candidate to about 2230 candidates, then, according to the 

corresponding equality  
2

496 364 2302 1 2 2
n

   , the data 

complexity decreases to about 2500.43 chosen plaintexts. Due to 

this change, the only affected part of time complexity is the 

complexity of the exhaustive search (after the last step) with 

2230 × 2256 = 2486 11-round encryptions, which does not change 

the overall time complexity of the attack. 

V. CONCLUSION 

Security of 3D block cipher has been considered through 

several cryptanalysis methods. The best known single-key 

attack on 3D is a truncated differential attack on 13 rounds of 

this cipher which has been proposed by Takuma et al. [5], with 

the time complexity of 2308 encryptions and data complexity of 

2470 chosen plaintexts. In this paper, we focused on advancing 

the impossible differential cryptanalysis of 3D block cipher. 

While the previous impossible differential attacks on this cipher 

can analyze up to 10 rounds of the cipher, this paper, using a 

new 6-round impossible differential, presents an impossible 

differential attack on 11-round variant of 3D. The proposed 

attack requires about 2501 chosen plaintexts and about 2381 bytes 

of memory. Also, the overall time complexity of the attack is 

equivalent to about 2495 11-round encryptions of 3D. 
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