
 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 24



Abstract—3D is a secret-key block cipher, designed to secure

and fast encryption of large amounts of data. This block cipher

uses multi-dimensional states to generalize the design of Rijndael.

Thus, while maintaining the benefits of the AES design, 3D

operates on 512-bit blocks of data and can also be used as a

cryptographic primitive in the cryptographic systems with the

large internal states. Since its proposal in 2008, the cryptanalysis

of 3D has been considered in several papers. While the previous

impossible differential attacks on 3D cipher can analyze up to 10

rounds of the cipher, this paper, using a new 6-round impossible

differential, presents an impossible differential attack on 11

rounds of 3D. The proposed distinguisher begins in the input of

AddRoundKey operation of round 3, and ends in the output of

ShiftRows of round 8. Results show that the proposed attack on

11-round of 3D cipher requires about 2501 chosen plaintexts and a

time complexity of about 2495 11-round encryptions.

Index Terms—Block ciphers, Cryptanalysis, Impossible

Differential, Symmetric cryptography

I. INTRODUCTION

he block cipher 3D is an AES-based block cipher proposed

by Nakahara at CANS 2008 [1]. This block cipher operates

on 512-bit blocks and supports a 512-bit secret-key. Inspired

from the design of AES [2], the main round transformations of

3D are basically the same as those of AES, while it operates on

larger blocks of data and a larger key size. In fact, 3D cipher

puts four AES states in parallel and applies the diffusion of AES

in two different directions in every two rounds in turn. Security

of 3D block cipher has been considered through several

cryptanalysis methods including multiset [1], [3], impossible

differential [1], [3]-[4], truncated differential [5] and square

attack [6]. Results of key recovery attacks on 3D block cipher

are summarized in Table I. According to this table, the best

known attack on 3D is a truncated differential attack which can

be mounted on 13 rounds of it [5]. Two known-key

distinguishers on 9.75-round and 15-round 3D have been also

proposed in [3] and [7], respectively.

In this paper we focus on impossible differential

cryptanalysis of 3D. Impossible differential cryptanalysis, an

extension of the differential attack [8], was first introduced by

Manuscript received August 28, 2016; accepted November 27, 2016.

(Corresponding Author) Mohsen Shakiba is with the Department of
Electrical and Computer Engineering, Jundi-Shapur University of Technology,

Dezful, Iran (e-mail: m.shakiba@jsu.ac.ir).

Knudsen [9] and Biham [10] to analyze DEAL and Skipjack,

respectively. This kind of attack uses differentials that hold with

probability zero to derive the right key by discarding the wrong

keys which lead to the impossible differential. This

cryptanalysis technique has achieved considerable results on

AES [11]-[14]. Also, for block cipher Camellia [15], which has

been approved by NESSIE and the Japanese CRYPTREC

projects, the best cryptanalytic results are obtained by the

impossible differential attacks [16]-[18].

TABLE I

RESULTS OF KEY-RECOVERY ATTACKS ON 3D BLOCK CIPHER
Rounds

Time

(Encryptions)

Data Memory Success

Rate

Ref Attack

Type

5.75 2139 2129 CP 2128 1 [1] Multiset

7, 8, 9 2133, 2189, 2414 ? ? ? [6] Square

5.75 265.6 236 CP 232 1 [1] Imp. Diff

9 2478 2445 CP ? 1 [4] Imp. Diff

10 2401 2501 CP 2311 1 [3] Imp. Diff

11 2288 2251 CP 2128 0.24 [5] Trunc. Diff

11 2113 2252 CP 2128 0.0034 [5] Trunc. Diff

13 2308 2470 CP 2128 ≈1 [5] Trunc. Diff

11 2495 2500.5 CP 2381 1 This Paper Imp. Diff

As it is seen in Table I, previous impossible differential

analyses of 3D cipher are applicable up to 10 rounds [1], [3]-

[4]. In this paper, using a new 6-round impossible differential

(ID), we propose an impossible differential cryptanalysis of 11

rounds of 3D cipher. This attack requires about 2500.5 chosen

plaintexts and 2505 memory accesses which is equivalent to

about 2495 11-round encryptions. Also, the attack needs about

2381 bytes of memory to store the intermediate values and the

precomputations.

The rest of this paper is organized as follow. Section II

provides a brief description of the 3D cipher. Section III

introduces a new 6-round ID distinguisher of 3D. A new key

recovery attack on 11 rounds of 3D is described in Section IV.

Finally, the paper is concluded in Section V.

II. PRELIMINARIES AND A BRIEF DESCRIPTION OF 3D

The block cipher 3D is a 22-round SPN block cipher with

512-bit block length and 512-bit key. Each state in the cipher is

composed of 64 bytes 0 1 63(, , ,)a a a which are ordered

column-wise as follows:

Mohammad Dakhilalian is with the Department of Electrical and Computer

Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran (e-
mail: mdalian@cc.iut.ac.ir).

Hamid Mala is with the Department of Information Technology, Faculty of

Computer Engineering, University of Isfahan, 81746-73441, Hezar Jerib
Avenue, Isfahan, Iran (e-mail: h.mala@eng.ui.ac.ir).

Impossible Differential Cryptanalysis of 3D

Block Cipher

Mohsen Shakiba, Mohammad Dakhilalian, and Hamid Mala

T

 [
 D

ow
nl

oa
de

d
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n
20

24
-0

4-
25

]

 1 / 5

mailto:m.shakiba@jsu.ac.ir
mailto:mdalian@cc.iut.ac.ir
mailto:h.mala@eng.ui.ac.ir
https://mjee.modares.ac.ir/article-17-1451-en.html

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 25

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
A

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 



Moreover, a key scheduling algorithm generates 22 rounds

of 512-bit subkeys, each with the same order and structure as

the state. Like AES, each round of 3D consists of four

transformations, each one is considered as a fraction of 0.25 of

one round. Using the terminology of [1], these transformations

are as follow:

- κi: bit-wise XOR with the 512-bit subkey of i-th round (ki),

equivalent to the AddRoundKey operation in the AES.

- γ: a byte-wise S-box layer with the 8-bit S-box of AES,

equivalent to the SubBytes operation in the AES.

- θ1, θ2: two different byte transpositions equivalent to the

ShiftRows operation of AES, applied in two different

directions, alternately. θ1 and θ2 are applied in odd-numbered

rounds and even-numbered rounds according to the following

permutations, respectively:

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

5 9 13 1 21 25 29 17 37 41 45 33 53 57 61 49

1

10 14 2 6 26 30 18 22 42 46 34 38 58 62 50 54

15 3 7 11 31 19 23 27 47 35 39 43 63 51 55 59

2

:

:

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a





 
 
 
 
 
 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

17 21 25 29 33 37 41 45 49 53 57 61 1 5 9 13

34 38 42 46 50 54 58 62 2 6 10 14 18 22 26 30

51 55 59 63 3 7 11 15 19 23 27 31 35 39 43 47

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 
 

As it is discussed in [19], these two permutations could be

unified in a single byte permutation with the same diffusion

property.

- π: a 4×4 matrix multiplication is applied to columns of the

state, equivalent to the MixColoumns operation of AES.

The i-th round of an r-round 3D cipher (0 1i r  ) is

denoted by
(mod2) 1 ()i i X   

, where X is the round input

state. In the last round, the π operation is replaced by an

additional AddRoundKey (round subkey rk). We refer to [1] for

more details of 3D structure. Because AddRoundKey and

MixColumns operations are both linear, it is possible to replace

them by each other. In such a case, we have an equivalent round

subkey ()eqk k .

Notations. The specific bytes are indicated by brackets; for

example bytes 2 and 8 of the round subkey ik are indicated by

,[2,8]ik .
ix  ,

ix  ,
ix  and

ix 
 denote the intermediate values

after the application of SubBytes, ShiftRows, MixColoumns and

AddRoundKey operations of round i, respectively. Moreover,
()eq

ix  is used to denote the AddRoundKey operation with the

equivalent round subkey eq

ik .

III. NEW 6-ROUND IMPOSSIBLE DIFFERENTIAL OF 3D

The impossible differential attack presented in this paper is

based on a new 6-round impossible differential. As illustrated

in Fig. 1, this distinguisher begins in the input of AddRoundKey

operation of round 3 with a difference which is nonzero in any

desired three bytes of the 16-th column and is zero in the other

61 bytes. So, there exist four different types of the input

difference. Fig. 1 shows how one of these input differences

leads to a difference in the output of round 5 which is zero in

one slice and nonzero in the others. On the other hand, in the

decryption direction, the distinguisher starts in the output of

ShiftRows of round 8 with a difference which is nonzero in only

one byte of the 16th column and zero in the other 63 bytes. Fig.

1 shows one of the four possible output differences leading to a

difference which is nonzero in all 64 bytes in the output of

round 5. This contradicts the output difference of the

differential in the encryption direction.

Fig. 1. The new 6-round impossible differential of 3D cipher.

IV. IMPOSSIBLE DIFFERENTIAL ATTACK ON 11 ROUNDS OF 3D

For mounting the impossible differential attack on 3D cipher,

three rounds are added to the beginning of the 6-round

distinguisher and two rounds to the end of it. Fig. 2 and Fig. 3

illustrate these added rounds, respectively. As it can be seen, 62

bytes of subkeys are involved in this attack and the ultimate

goal is to recover the correct value of these subkeys. The attack

scenario is composed of two phases. At the first stage some

tables are pre-computed and then the online stage begins.

Fig. 2. Three additional rounds before the distinguisher

An issue, which must be considered in the online stage, is the

amount of required proper plaintext/ciphertext pairs. Proper

pairs are the plaintext/ciphertext pairs which satisfy the input

difference P and output difference C as it is indicated in

Fig. 2 and 3, respectively. Based on Fig. 2, the probability for a

plaintext pair with the difference ∆P to meet the input

difference of the distinguisher is about 2−192 × 2−48 × 4 × 2−8 =

 [
 D

ow
nl

oa
de

d
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n
20

24
-0

4-
25

]

 2 / 5

https://mjee.modares.ac.ir/article-17-1451-en.html

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 26

2−246. For a ciphertext pair with the difference ∆C the

probability to meet the output difference of the distinguisher is

also about 2−96 × 4 × 2−24 = 2−118. So, for a proper

plaintext/ciphertext pair, the probability to meet the impossible

differential is about 2−246 × 2−118 = 2−364. For a specific value of

the 62-byte target subkey, if a proper plaintext/ciphertext pair

meets the impossible differential, then the value of subkey is

wrong and must be eliminated from the key space. Therefore,

using 2n
 proper pairs, the probability for a wrong key not to be

eliminated is about  
2

3641 2
n

 . So, using 2n proper pairs,

about  
2

496 3642 1 2
n

  wrong 62-byte subkeys remain in the

key space. For n = 372.43, there will remain only about one

wrong subkey (in addition to the correct subkey which is not

eliminated). In the two upcoming subsections, at first, some

required precomputations are described and then we will

illustrate the online attack procedure.

Fig. 3. Two additional rounds after the distinguisher

A. Precomputations

In this section, we prepare three tables H1, H2 and T to reduce

the amount of partial encryption/decryptions in the online stage

of the attack.

- H1: For all of the   8 3 8 8 402 2 2 1 2     possible

pairs of  2,[48,49,50,51] 2,[48,49,50,51],x x  which have non-zero

difference only in the byte 49, perform a partial decryption to

compute the values of pairs  2,[48,1,18,35] 2,[48,1,18,35],x x  . Store the

obtained pairs in a hash table H1 indexed by their difference

2,[48,1,18,35] 2,[48,1,18,35]x x  . Such a table has 232 rows and on

average 240/232 = 28 pairs lie in each row. Clearly, for an

intermediate pair  1,[48,1,18,35] 1,[48,1,18,35],x x  it is sufficient to

access the row indexed by 1,[48,1,18,35] 1,[48,1,18,35]x x  in H1 to

obtain on average 28 values for
1,[48,1,18,35]k .

H2: For all of the   8 3 8 8 402 2 2 1 2     possible

pairs of  2,[60,61,62,63] 2,[60,61,62,63],x x  which have non-zero

difference only in byte 60, compute the values of pairs

 2,[60,13,30,47] 2,[60,13,30,47],x x  . Store the obtained pairs in a hash

table H2 indexed by their difference 2,[60,13,30,47] 2,[60,13,30,47]x x  .

Such a table has 232 rows and on average 240/232 = 28 pairs lie in

each row. So, for an intermediate pair  1,[60,13,30,47] 1,[60,13,30,47],x x 

it is sufficient to access the row indexed by

1,[60,13,30,47] 1,[60,13,30,47]x x  in H2 to obtain on average 28 values

for
1,[60,13,30,47]k . Note that we can also use table H2 to obtain on

average 28 values of
0,[60,49,54,59]k for each plaintext pair of

 0,[60,49,54,59] 0,[60,49,54,59],x x  which take this pair to a difference

1,[60,61,62,63]x  with only one non-zero byte in location 60.

-T: For all of the 232 possible pairs of  3,[60,49] 3,[60,49],x x  with

non-zero difference, perform a partial encryption through

1   to compute the difference value 3,[60,61,62,63]x  . Now,

if this difference is non-zero exactly in three bytes, then store

the pair in table T indexed by 3,[60,49] 3,[60,49]x x  . The

probability to meet this condition is about 4 × 2−8 = 2−6, so about

232−6/216 = 210 pairs lie in each of the 216 rows of table T. Clearly,

for an intermediate pair  2,[60,49] 2,[60,49],x x  it is sufficient to

access the row of T with index 2,[60,49] 2,[60,49]x x  to obtain on

average 210 values for
2,[60,49]k .

The overall computations for preparing these tables are less

than 241 partial encryptions. Further, the required memory for

these tables is about 243, 243 and 228 bytes for the tables H1, H2

and T, respectively.

B. The online stage of the attack procedure

After preparing the hash tables, the attack is carried out by

the following steps. In the first step of the attack the required

proper plaintext/ciphertext pairs are prepared. Then, attack

proceeds by removing wrong values of involved 62-byte

subkeys from the key space until only the right value of the 62-

byte subkey remains. For reducing the time complexity, we use

the early aborting technique [16] as well as the precomputed

tables H1, H2 and T. The overall required computations for each

step (with respect to the 11-round 3D encryptions) are indicated

in the end of that step. Also, in the following time complexities,

the coefficient  equals to 6.462 (1 11) (1 16) 2   .

- Step 1. Take 2373.43 structures of ciphertexts such that each

structure contains about 2128 ciphertexts that are fixed in the 48

bytes of C with zero difference indicated in Fig. 3 and take

all the possible values in other 16 bytes. So, about 2128 × 2128/2

= 2255 ciphertext pairs are obtained from each structure which

their difference is coincident to the required C . Obtain the

corresponding plaintexts of each structure in a chosen

ciphertext scenario. Since the probability of having a plaintext

 [
 D

ow
nl

oa
de

d
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n
20

24
-0

4-
25

]

 3 / 5

https://mjee.modares.ac.ir/article-17-1451-en.html

SHAKIBA et al IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS OF 3D BLOCK CIPHER 27

pair with the difference P in Fig. 2 is 2−256, then for each

structure we can collect about 2255 × 2−256 = 2−1 plaintext pairs

with the difference P . Hence, after examining all of the 2373.43

structures, we can collect about 2n = 2373.43 × 2−1 = 2372.43 distinct

ciphertext/plaintext pairs satisfying the desired C and P ,

respectively. As it was discussed in the beginning of Section

IV, this amount of data is sufficient to recover the correct value

of 62-byte subkey. The time complexity of this step, which

corresponds to the data complexity of the attack, is about 2128 ×

2373.43 = 2501.43 11-Round 3D encryptions. We also need 4 ×

2372.43 × 64 = 2380.43 bytes of memory to store the proper

ciphertext/plaintext pairs.

- Steps (2, 3, 4, 5). For i = 0,1,2,3 do the following steps 2, 3,

4 and 5 sequentially:

Guess 32 bits of
11,[3 16 ,6 16 ,9 16 ,12 16]i i i ik    

 and for all of the 242n i

proper ciphertext pairs

 11,[3 16 ,6 16 ,9 16 ,12 16] 11,[3 16 ,6 16 ,9 16 ,12 16],i i i i i i i ix x 

       
 , perform a

partial decryption to obtain the pairs

 () ()

10,[12 16 ,13 16 ,14 16 ,15 16] 10,[12 16 ,13 16 ,14 16 ,15 16],eq eq

i i i i i i i ix x 

       
 . If for a

proper pair, the difference of the obtained pairs is non-zero only

in the byte
()

10,[15 16]

eq

ix 

 , then keep this proper pair for the next

step. The probability of this condition is about 242 , so there

remain about
 24 1

2
n i 

 proper pairs for the next step. The time

complexity of this step is about
 24 32 1 32 82 2

n i i n i 
      

encryptions.

- Step 6. Now, we have the intermediate remaining pair values

 () ()

10,[15,30,45,60] 10,[15,30,45,60],eq eqx x  . Guess 32 bits of 10,[15,30,45,60]

eqk and

for all of the 962n  remaining pairs  () ()

10,[15,30,45,60] 10,[15,30,45,60],eq eqx x 

perform a partial decryption to obtain the difference value

8,[60,61,62,63]x  . If for a pair, this difference is nonzero in only one

byte, then we have met the desired difference in the output of

the distinguisher in Fig. 1, so keep such a pair for the next step.

The probability of this condition is about 4 × 2−24, so it is

expected to remain about 1182n  proper ciphertext pairs which

meet the output difference of the distinguisher. This step

requires about
 96 160 642 2
n n 
     encryptions.

- Steps (7, 8, 9, 10). For all of the 1182n  remaining ciphertext

pairs take their corresponding plaintext pairs. Then for i =

0,1,2,3 do the following steps 7, 8, 9 and 10 sequentially:

Guess four bytes
0,[16 ,5 16 ,10 16 ,15 16]i i i ik   

 and for all of the

118 242n i  remaining proper plaintext pairs

 0,[16 ,5 16 ,10 16 ,15 16] 0,[16 ,5 16 ,10 16 ,15 16],i i i i i i i ix x     
 perform a partial

encryption to obtain pairs

 1,[16 ,1 16 ,2 16 ,3 16] 1,[16 ,1 16 ,2 16 ,3 16],i i i i i i i ix x 

     
 . If for a pair, the

difference value of 1,[16 ((1) mod 4)]i ix 

  is nonzero and the

difference of the other three bytes of (1 + 4i)-th column of
1x 

are zero, then store this pair for the next step. The probability

of this condition is about 242 , so about
 118 24 1

2
n i  

 proper

pairs remain for the next step. This step requires about
   118 24 160 32 1 74 82 2
n i i n i 
         encryptions.

- Steps (11, 12, 13). So far, we have guessed 288 bits of

subkeys and obtained about 2142n  remaining pairs from

previous steps. For i = 0, 1, 2 do the following steps 11, 12 and

13 sequentially:

Guess four bytes
0,[1 16 ,6 16 ,11 16 ,12 16]i i i ik    

 and for all of the

214 242n i  remaining plaintext pairs

 0,[1 16 ,6 16 ,11 16 ,12 16] 0,[1 16 ,6 16 ,11 16 ,12 16],i i i i i i i ix x       
 perform a

partial encryption to obtain pairs

 1,[12 16 ,13 16 ,14 16 ,15 16] 1,[12 16 ,13 16 ,14 16 ,15 16],i i i i i i i ix x 

       
 . If for a pair,

the difference value of 1,[17 13]ix 

 is nonzero and the difference

of the other three bytes of 4(i + 1)-th column of
1x  are zero,

then store this pair for the next step. The probability of this

condition is about 242 . So, about
 214 24 1

2
n i  

 proper pairs

remain for the next step. About
   214 24 288 32 1 106 82 2
n i i n i 
         encryptions are

performed in this step.

- Step 14. So far, we have guessed 384 bits of subkeys and

obtained about
2862n 

 remaining pairs from the previous steps.

Prepare a vector U of
1122 bits, each corresponds to a possible

value of 112 bits
0,[60,49,54,59] 1,[48,1,18,35] 1,[60,13,30,47] 2,[60,49]| | |k k k k .

Now, for each of the 2862n  remaining pairs do the following

steps:

- Step 14.1. In this step, we have the intermediate pair values

 1,[48,1,18,35] 1,[48,1,18,35],x x  . So, by reference to the row indexed by

1,[48,1,18,35] 1,[48,1,18,35]x x  in table H1, obtain 28 values for

1,[48,1,18,35]k . Then, for these key values make a partial encryption

to obtain corresponding 28 pair values  2,[49] 2,[49],x x  . The time

complexity of this step is
 384 286 8 1062 2
n n    memory

accesses (MA) and
1062n  encryptions.

- Step 14.2. We have the plaintext pair values

 0,[60,49,54,59] 0,[60,49,54,59],x x  . So, by reference to the row indexed

by
0,[60,49,54,59] 0,[60,49,54,59]x x  in table H2, obtain 28 values of

0,[60,49,54,59]k . Then, for these key values make a partial

encryption to obtain the corresponding 28 pair values

 1,[60] 1,[60],x x  . This step is performed by
 384 286 8 1062 2
n n   

MA and
1062n  encryptions.

- Step 14.3. For each of the obtained 28 pair values

 1,[60] 1,[60],x x  , we have the intermediate pair values

 1,[60,13,30,47] 1,[60,13,30,47],x x  . So, by reference to the row indexed

by 1,[60,13,30,47] 1,[60,13,30,47]x x  in table H2, obtain 28 values of

1,[60,13,30,47]k and for these key values make a partial encryption

to obtain the corresponding 28 pair values  2,[60] 2,[60],x x  . This

 [
 D

ow
nl

oa
de

d
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n
20

24
-0

4-
25

]

 4 / 5

https://mjee.modares.ac.ir/article-17-1451-en.html

 MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 16, NO 3, AUTUMN 2016 28

step requires
 384 286 8 8 1142 2
n n     MA and

1142n 

encryptions.

- Step 14.4. For each of the 8 8 8(2 2) 2  obtained pair values

 2,[60,49] 2,[60,49],x x  , access to the row indexed by

2,[60,49] 2,[60,49]x x  in table T to obtain 210 values for
2,[60,49]k .

Then, for each of the 8 8 8 10 342 2 2 2 2    obtained subkey

values
0,[60,49,54,59] 1,[48,1,18,35] 1,[60,13,30,47] 2,[60,49]| | |k k k k mark the

corresponding bits in the vector U to indicate them as wrong

keys. This step requires
 384 286 34 1322 2
n n    MA.

- Step 15. Check all of the bits of the vector U and if there is a

bit that is not marked, you have found a candidate for the correct

496-bit subkey which consists of the corresponding 112-bit

value of this unmarked bit along with the current 384-bit

guessed subkey. So, store this candidate and continue the

procedure. This step requires 384 112 4962 2  MA.

As it is expected, the above procedure proceeds until all of

the 2384 possible values of 384-bit subkeys are guessed in order.

It is expected that eventually, there will remain about 2

candidates for the correct 496-bit target subkey. For each

candidate, 256 bits of these 496 bits are the bits of k0. Finally,

for each candidate we perform an exhaustive search for the

other 256 bits of k0 with 2 × 2256 11-round encryptions.

C. Complexity of the attack

As mentioned in Step 1 of the online stage of the attack, the

required data to mount the attack contains about 2128 × 2373.43 =

2501.43 chosen plaintexts. The memory complexity consists of

4×2372.43 ×64 = 2380.43 bytes of memory to store the proper

ciphertext/plaintext pairs, 2112 bits to store the U vector in step

14, and about 244 bytes for the precomputed tables. Also, note

that the required memory for storing the intermediate pairs is

far less than 2380.43 bytes of memory, hence the total memory

complexity is about 2381 bytes of memory.

As mentioned in the online stage of the attack, for n = 372.43,

the dominant parts of the time complexity include 2504.43 MA in

Step 14-4, 2496 MA in Step 15, and 2487.97 11-round 3D

encryptions in step 13. On the other hand, for each round of 3D,

transformations γ and π can be evaluated by 64 and 16 memory

accesses, respectively. In a same way, according to the key

schedule of 3D, described in [1], each round key k1 to k11 is

obtained with 16 + 16 = 32 memory accesses. Thus, the

application of 11-round encryptions requires about

(11×64+10×16)+11×32 = 1216 ≈ 210.25 memory accesses (The

complexity of key additions and byte permutations are

negligible).

Hence, the total time complexity is equivalent to about

2505−10.25 + 2488 ≈ 2495 11-round encryptions. However, if we

increase the number of remaining candidates from one

candidate to about 2230 candidates, then, according to the

corresponding equality  
2

496 364 2302 1 2 2
n

   , the data

complexity decreases to about 2500.43 chosen plaintexts. Due to

this change, the only affected part of time complexity is the

complexity of the exhaustive search (after the last step) with

2230 × 2256 = 2486 11-round encryptions, which does not change

the overall time complexity of the attack.

V. CONCLUSION

Security of 3D block cipher has been considered through

several cryptanalysis methods. The best known single-key

attack on 3D is a truncated differential attack on 13 rounds of

this cipher which has been proposed by Takuma et al. [5], with

the time complexity of 2308 encryptions and data complexity of

2470 chosen plaintexts. In this paper, we focused on advancing

the impossible differential cryptanalysis of 3D block cipher.

While the previous impossible differential attacks on this cipher

can analyze up to 10 rounds of the cipher, this paper, using a

new 6-round impossible differential, presents an impossible

differential attack on 11-round variant of 3D. The proposed

attack requires about 2501 chosen plaintexts and about 2381 bytes

of memory. Also, the overall time complexity of the attack is

equivalent to about 2495 11-round encryptions of 3D.

REFERENCES

[1] J. Nakahara, "3D: a Three-Dimensional Block Cipher", CANS 2008,

LNCS, 5339, 2008, pp. 252-267.
[2] J. Daemen, V. Rijmen, "The design of Rijndael: AES - the Advanced

Encryption Standard", Springer Verlag, 2002.

[3] J. Nakahara, "New Impossible Differential and Known-Key
Distinguishers for the 3D Cipher", ISPEC 2011, LNCS, 6672, 2011, pp.

208-221.

[4] T. Xue-hai, L. Chao, W. Mei-yi, Q. Long-jiang, "Impossible Differential
Attack on 3D Cipher", Journal of Electronics & Information Technology,

32 (10), 2010, pp. 2516-2520.

[5] K. Takuma, L. Wang, Y. Sasaki, K. Sakiyama, K. Ohta, "New Truncated
Differential Cryptanalysis on 3D Block Cipher", ISPEC 2012, LNCS,

7232, 2012, pp. 109-125.

[6] W. Mei-yi, T. Xue-hai, L. Chao, Q. Long-jiang, "Square Attacks on 3D

Cipher", Journal of Electronics & Information Technology, 32 (1), 2010,

pp. 157-161.

[7] L. Dong, W. Wu, S. Wu, J. Zou, "Known-key distinguisher on round-
reduced 3D block cipher", WISA 2011, LNCS, 7115, 2012, p. 55-69.

[8] E. Biham, A. Shamir, "Differential cryptanalysis of DES-like

cryptosystems", J. Cryptol., 4 (1), 1991, pp. 3-72.
[9] L.R Knudsen, "DEAL a 128-bit block cipher", Technical report, 1998

[10] E. Biham, A. Biryukov, A. Shamir, "Cryptanalysis of Skipjack Reduced

to 31 Rounds using impossible differentials", EUROCRYPT ’99, LNCS,
1592, 1999, pp. 12-23.

[11] H. Mala, M. Dakhilalian, V. Rijmen, M. Modarres-Hashemi, "Improved

Impossible Differential Cryptanalysis of 7-Round AES-128",
INDOCRYPT 2010, LNCS, 6498, 2010, pp. 282-291.

[12] J. Lu, O. Dunkelman, N. Keller, J. Kim, "New Impossible Differential

Attacks on AES", INDOCRYPT 2008, LNCS, 5365, 2008, p. 279-293.
[13] B. Bahrak, M.R. Aref, "Impossible differential attack on seven-round

AES-128", IET Inf. Secur., 2 (2), 2008, pp. 28-32.

[14] W. Zhang, W. Wu, D. Feng, "New Results on Impossible Differential
Cryptanalysis of Reduced AES", LNCS, 4817, ICISC 2007, 2007, pp.239-

250.

[15] K. Aoki, T. Ichikawa, M. Kanda, "Camellia: a 128-bit block cipher
suitable for multiple platforms - design and analysis", SAC 2000, LNCS,

2012, 2000, pp. 39-56.

[16] J. Lu, J. Kim, N. Keller, O. Dunkelman, "Improving the Efficiency of
Impossible Differential Cryptanalysis of Reduced Camellia and

MISTY1", CT-RSA 2008, LNCS, 4964, 2008, pp. 370-386.

[17] H. Mala, M. Dakhilalian, M. Shakiba, "Impossible differential
cryptanalysis of reducedround Camellia-256", IET Inf. Secur., 5 (3),

2011, pp. 129-134.
[18] J. Lu, Y. Wei, P.A. Fouque, J. Kim, "Cryptanalysis of reduced versions

of the Camellia block cipher", IET Inf. Secur., 6 (3), 2012, pp. 228-238.

[19] H. Mala, "Unified Byte Permutations for the Block Cipher 3D", Journal

of Computing and Security, 1 (1), 2014, pp. 15-22.

 [
 D

ow
nl

oa
de

d
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n
20

24
-0

4-
25

]

Powered by TCPDF (www.tcpdf.org)

 5 / 5

https://mjee.modares.ac.ir/article-17-1451-en.html
http://www.tcpdf.org

